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TALL TALES ABOUT TAILS OF HYDROLOGICAL DISTRIBUTIONS. II

By Vı́t Klemeš1

ABSTRACT: This paper provides a critical examination of some common ‘‘theoretically based’’ approaches to
frequency analysis (a general discussion of which appears in Part 1 of the paper) and the myths they have
generated about the upper tails of hydrological distributions.
‘‘Believe nothing,
No matter where you read it or who said it,
No matter if I said it,
Unless it agrees with your own reason and common sense.’’

Siddhartha Gautama Buddha

INTRODUCTION

As noted in Part 1 of this paper (Klemeš 2000), the theory
of hydrological frequency analysis (FA for short) rests on the
postulates (1) that the hydrological entity X being analyzed is
an ‘‘independent identically distributed random variable’’
(iidrv) with a distribution F(X); and (2) that its observation
record is a random sample from this distribution.

To paraphrase the late Myron Fiering commenting on spu-
rious mathematization of systems analysis [‘‘We are swept up
in a litany of automatic computation, sensitivity analysis, and
model making. It has become a new religion’’ (Fiering 1976)],
one may say that hydrological FA has been swept up in the
litany of best fits, efficient estimates, sufficient statistics, un-
biased parameters, theorems, and proofs; it has become a new
religion, in which the two above postulates play the role of
fundamental articles of faith. The following sections will il-
lustrate some of their practical consequences.

THE TAIL WAGGING THE DOG

The methods in which the random sample concept has been
used to arrive at a probability distribution model of a hydro-
logical variable fall into two broad categories, which may
loosely be labelled ‘‘geometric’’ (or graphical) and ‘‘numeri-
cal.’’ The former relies on a ‘‘best’’ fit of the geometry of the
duration curve by some analytical curve deemed to represent
a ‘‘theoretical distribution model,’’ the latter, supposed to be
more rigorous, attempting to determine this model via some
numerical characteristics of the sample. These were initially
based on estimating model parameters by statistical moments,
then by the supposedly superior methods of ‘‘maximum like-
lihood,’’ ‘‘maximum entropy,’’ and other ‘‘information-theo-
retical’’ methods, whose superiority is now being challenged
by the apparently even more superior method of ‘‘L-mo-
ments’’—which, in a roundabout way, depends on the ge-
ometry of the nonrigorous duration curve and its nonrandom
features discussed in Part 1 (Klemeš 2000) even more than
did the original geometric methods.

To see how this vicious circle closes onto itself despite the
ever more clever mathematical sleight of hand deplored al-
ready 40 years ago by the late Professor P. A. P. Moran (see
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Part 1), we shall examine in some detail its first and the (so
far) last stages, pausing briefly midway.

Nonrandom Treatment of Random Sample Plot

The original method of estimating the ‘‘parent distribution’’
of a hydrological entity was to fit several candidate models to
a ‘‘probability plot’’ of its observation record (usually with the
aid of a linearizing model-specific probability paper) and
choose the ‘‘model of the best fit’’ on the basis of the minimum
sum of (squares of) ‘‘errors.’’ It is important to see that what
is being treated as ‘‘errors’’ and ‘‘minimized’’ are the devia-
tions of the observation values Xr from the model values at
fixed plotting positions PPr (e.g., Wallis and Matalas 1974).
Thus, in stark contradiction to the underlying assumption that
the observations are exact values X taken from an unknown
distribution F, it is these ‘‘known-to-be-true’’ X values that are
treated as ‘‘error corrupted,’’ while the representation of their
unknown probabilities F(X) by fixed plotting positions is im-
plicitly regarded as error-free, though it is here where the ‘‘er-
rors’’ obviously reside. In other words, the observations are
treated not as exact ordinates of the true distribution function
at unknown and randomly chosen coordinate points on its
F-axis (as the random sample commandment implies and re-
quires), but as error-corrupted measurements taken on the
fitted curve at known error-free regularly spaced determin-
istic coordinates called plotting positions (PP for brevity).

The ingenious way by which this discrepancy between the-
ory and practice is usually legitimized is by recourse to a result
of theoretical statistics which states that, ‘‘given a random
sample X1, X2, . . . , Xn from F(x), a point estimate of F(x) at
an arbitrary but fixed value x is given by #(Xk # x)/n, . . .
[i.e.,] by the empirical or sample distribution function EDF(x)
= #(Xk # x)/n’’ (Kotz et al. 1985b; p. 320; emphasis added).

The important point here is that all such point estimates, or
PPs, at points r {note that the number # defined above is equal
to r/n, the familiar ‘‘California PP,’’ another point estimate
being, for example, the mean of the distribution hr(P) [see Fig.
2(c) in Part 1], ^Pr& = r/(n 1 1), the well-known ‘‘Weibull
PP’’}, have this one thing in common: each of them, regardless
of its definition equation, always lies somewhere within the
rth quantile. This means that (for the same r and n) a specific
point estimate of exceedance probability is always the same,
whatever the form of the true parent distribution. For example,
the ordered sample Xn = (X1, X2, . . . , Xn) in Fig. 2(a) in Part
1 may have been ‘‘drawn’’ from either of the two (or any
number of) very different distributions, but, if it were plotted
at the same prescribed PPs, the two different distributions
would have the same EDF and their ‘‘point’’ estimates would
be the same for each and every r.

The introduction of the notion of ‘‘point estimate’’ may thus
mislead one into believing that, even for our embarrassingly
small hydrological samples (in contradistinction with the ‘‘suf-
ficiently large samples’’ postulated by the Glivenko theorem;
see Part 1), it is legitimate to replace the unknown irregularly
spaced probability coordinates Pr of the ordered (but random!)
observations Xr with the regularly spaced plotting positions
PPr and still get a credible representation of the unknown dis-
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tribution. After all, if we have a valid estimate for each of the
n points of the distribution function, does it not mean that the
complete set of these estimated points, especially when fitted
with a ‘‘theoretical distribution model,’’ represents a good ap-
proximation of the true distribution, including its upper tail?

The answer is NO. The rank-based ‘‘point estimate’’ of the
probability Pr is valid only in a similar sense as, say, the av-
erage, ^A&, of a chronological sequence of random annual
flows, A1, A2, . . . , An, is a valid ‘‘point estimate’’ of the flow
in an ith year. While this estimate is valid for every single
year or point i = 1, 2, . . . , n, nobody would dream of repre-
senting the true pattern of the given annual flow series by
a sequence of these n valid equal point estimates ^A&. But the
FA theorist is doing a similar thing when regarding the points
plotted at the n average locations r/(n 1 1) (or quantiles r/n,
or other PPs) as credibly representing the true pattern of the
distribution in question.

The probability that, in a single experiment, each of n ran-
dom numbers drawn from U(0, 1) falls into its nominal (1/n
wide) quantile is very small indeed. Its exact value can be
obtained via combinatorics (see Appendix I), but any standard
‘‘table of random numbers’’ will serve to provide a good idea;
for example, it is virtually impossible to find there a string of
ten numbers, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (in whatever permu-
tation), its exact probability being 0.000363.

In our context, the irregularity of points Pr is most important
in the uppermost part of the ordered sample, since in this re-
gion their replacement with a regularly-spaced set of PPr has
the greatest effect on the shape of the extrapolated upper tail.
This will be examined in detail in the next section.

The Enigma of the Tails

The conventional plot of EDF stretches out, or clips off, the
(unknown) distribution tail so that it always extends exactly
to the first plotting position, PP1, on the axis of exceedance
probability. The question is: What is the likelihood of such an
‘‘average tail’’ occurring in a random sample, and how does
it change with sample size? The answer is that this likelihood
is small and does not much change with n. In fact, counter-
intuitive as it may seem, if the observation record really is a
random sample, then the uncertainty in the location of the
first (as well as the last) few points of the EDF slightly
increases with an increasing sample size.

This will be demonstrated by a closer look at the distribu-
tion of the exceedance probability P1 of the largest value X1

in a random sample of size n. Since the exceedance probabil-
ities Pr, r = 1, 2, . . . , n represent an ordered random sample
from U(0, 1), the theory of order statistics defines the density
hr(P) and the distribution function Hr(P) of the distribution of
Pr in this form (Kotz et al. 1985b; p. 504):

n 2 1 n2r r21h (P) = n (1 2 P) P (1)r S Dr 2 1

n nn n21 n22 2H (P) = 1 2 (1 2 P) 2 (1 2 P) P 2 (1 2 P) Pr S D S D1 2

n n2r11 r212 ??? 2 (1 2 P) PS Dr 2 1 (2)

It may be noted that the use of this distribution for reliability
assessment of the exceedance probability (or return period) of
the largest observation is not new (Kritskii and Menkel 1981;
Lloyd 1995).

For our purpose, we shall use (2), which yields the distri-
bution function of P1 as

nH (P) = 1 2 (1 2 P) (3)1

From this, we shall calculate the values of H1 for the end
points of the rth quantiles of a sample of size n as
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FIG. 1. Distribution Functions of Exceedance Probability, P1

(Measured in Terms of Quantile Widths 1/n), of Largest Obser-
vation in Samples of Different Sizes n

TABLE 1. Probability that Largest Value, X1, from Random
Sample of Size n Is in First Quantile, Q1, of Width 1/n and that Ex-
actly Five Largest Values, X1, . . . , X5, from Random Sample of
Size n Are within First Five Quantiles, Q1–Q5

Sample
size n

(1)

Probability X1

is within Q1

(%)
(2)

Probability X1, . . . , X5

are within Q1–Q5

(%)
(3)

0
10
30
50

100
→`

67.2
65.1
63.8
63.6
63.4
63.2

100
24.6
19.2
18.5
17.6
17.55

nH (P = r/n) = 1 2 (1 2 r/n) (4)1

whose limit for n → ` is

rlim H (P = r/n) = 1 2 1/e (5)1
→n `

The quantile end points, r/n, have been chosen as bench-
marks because they represent the limiting values of plotting
positions (the ‘‘California PPs’’).

From (4) and (5) we find that the probability H1(P = 1/n)
of the largest observation X1 (from a random n-sample) being
drawn from the first quantile Q1 (within which its plotting
position PP1 is always located, whatever the formula for its
computation) in samples of sizes typical of hydrological
records is less than about 65% and is actually slightly decreas-
ing with an increasing sample size. The exact numbers are
given in Table 1, and a graphical representation of the distri-
bution functions of P1 for several sample sizes is shown in
Fig. 1.

Note that, even for an infinitely large sample, there is almost
a 37% probability that X1 is not in its nominal first quantile,
about a 13.5% probability that it comes from beyond the sec-
JOURNAL OF HYDROLOGIC ENGINEERING / JULY 2000 / 233
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FIG. 2. (a) Typical Random Samples of Sizes n = 10, 30, 100 from Gaussian Distribution; (b) Ten (N = 10) Different ‘‘Equally Likely
Realizations’’ of ‘‘Probability Plots’’ of Samples Shown in (a), on Assumption that Their Parent Distributions Are Not Known
ond quantile, about 5% that it comes from beyond the third,
and almost 2% that it has been drawn from the fifth or higher
quantiles.

On the other hand, a simple computation shows that the
probability that exactly the five largest X-values are located in
the first five quantiles is generally less than 20% (see Table 1
for exact numbers). However, even in such a case [i.e., if all
the P1, . . . , P5 were in the interval (0, 5/n)], the probability
that each P is located in its nominal quantile is still only
3.84%, while the probability that three or four of the first five
quantiles are empty is 9.76%, and there is a 28.96% proba-
bility that three or more of the five smallest P-values are
located in the same quantile! (see Appendix I).

The fact that, practically regardless of the sample size,
there are such comparatively high probabilities (1) that the
largest (as well as the smallest) observations may easily be
displaced by up to about five quantiles from their nominal
plotting positions; and (2) that they may be dispersed in a very
irregular manner, can distort the shape of F(X) graphically
fitted to EDF(X) to such an extent that its extrapolated tail
has no greater credibility and objectivity than if the EDF
were just ‘‘extended by eye.’’

The erratic nature of the tails is illustrated in Fig. 2(a),
which shows typical random samples of sizes n = 10, n = 30,
and n = 100 drawn from a normal distribution, together with
conventional plots of their EDFs.

The seriousness of the problem was perhaps best demon-
strated by Wallis and Matalas (1974), who found that, for sam-
ples of sizes n = 10 to n = 90 from a normal distribution, the
minimum-sum-of-squares ‘‘best-fits’’ failed to identify the nor-
mal as the parent in '40–47% of cases, regardless of the
value of n; and when the parent was an extreme value type I
(Gumbel) distribution, the same procedure misidentified the
parent in '60–80% of cases! The significance of this latter
result, self-evident as it is, will be brought into even sharper
focus in light of the last section of this paper.

So, if we really do believe that our observation record Xn

was generated as a random sample from some distribution,
and if we admit that we know neither this distribution, nor the
particular set of the ordered random values P1, P2, . . . , Pn

which—out of an unlimited number N of such sets that it was
capable of ‘‘generating’’—nature had actually ‘‘used’’ to pro-
duce the observation record, what can we honestly say about
234 / JOURNAL OF HYDROLOGIC ENGINEERING / JULY 2000
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the likely form of the distribution F(X )? The answer is: Lit-
tle! Because there is no preferred set of plotting positions for
the ‘‘probability plot’’; our ordered set Xn can legitimately be
associated with any ordered set Pn of random numbers from
U(0, 1), and each one of them would be an ‘‘equally likely
realization’’ of the sample EDF. The best one can do is to
generate a number of such ‘‘equally likely realizations’’ to get
a better idea of the uncertainty involved. Thus, for example,
for each of the three samples shown in Fig. 2(a), ten (N = 10)
such realizations are plotted in Fig. 2(b).

Applying this procedure to the real-world sample shown in
Fig. 1 of Part 1, one should be making ‘‘distributional as-
sumptions’’ about it not from the EDF in Fig. 1(b) of Part 1
—as the common practice would suggest—but from an ‘‘un-
certainty zone’’ such as shown here in Fig. 3, which is based
on 500 equally likely realizations of the ‘‘probability plot’’ of
the data, provided that their parent F(X ) is not known.

Needless to say, such an ‘‘uncertainty zone’’ contains very
little information useful for making ‘‘distributional assump-
tions’’ about the form of F(X), especially about the shape of
its upper tail. Its uncertainty relates to no hydrological feature
but is just a statistical consequence of the specific statistical
operation—the ordering—performed on the data, and is the
same for any kind of data, given the sample size is the same.
In other words, it is merely an empirically constructed confi-
dence band for the plotting positions and can be obtained an-
alytically, for any given confidence level, from (1); for ex-
ample, Lloyd (1995) calculated the two-sided 95% confidence
interval for PP1:50 = PP(X1:50) = 1/51 = 0.0196 to be (0.0005
2 0.071).

But, paradoxically, this lack of information may offer a bet-
ter practical guidance for extrapolation of the tail than a ‘‘rig-
orously’’ fitted and tested ‘‘theoretical distribution model’’ for
a number of reasons.

First, regardless of its distorted tails, even the general shape
of a standard EDF is misleading for guessing the form of
F(X ) because of the hydrological reasons discussed in Part 1.
Second, a large number of models differing in their upper tails
will fit the EDF of a moderately large sample equally well.
Third, and perhaps most important, once a specific model is
fitted and found to be within some customary (90–95%) con-
fidence band centered on it, by some mysterious psychological
process, the ‘‘confidence’’ is automatically transferred from
ct to ASCE license or copyright. Visit http://www.ascelibrary.org



FIG. 3. ‘‘Uncertainty Zone’’ for ‘‘Probability Plot’’ in Fig. 1(b) of Part 1, Based on Its 500 ‘‘Equally Likely Realizations,’’ and Some
Possible Extrapolations of Its Upper Tail
this band as a whole to the fitted curve itself—the model is
no longer treated as merely an ‘‘average’’ of the many curves
that cannot be ruled out, but, regardless of the most vocal
denials, as the one curve that inspires ‘‘confident’’ extrapola-
tion. As a distinguished German engineering professor recently
complained (Schultz 1993), the idea that, say, the upper 5%
confidence limit of the fitted model, rather than the model
itself, should be used for the determination of design values
‘‘could not be sold to practice’’ during his several decades of
experience.

Contrary to the practice outlined above, an ‘‘uncertainty
zone’’ constructed in the fashion of Fig. 3 makes reference and
gives preference to no specific ‘‘theoretical distribution
model.’’ It therefore does not encourage blind extrapolation of
a specific curve from which the desired numbers are just ‘‘read
off,’’ but makes one think hard, not only as to which way to
draw a curve but how far it may make sense to extend it (Fig.
3)—because whoever has ever been faced with such a task
‘‘for real’’ (not just as an academic exercise) would know how
much more cautious becomes the eye, and heavier the hand,
with every centimeter of the extended line. And this is good,
because the increasing uncertainty sharpens one’s sense of re-
sponsibility and encourages one to look for additional sources
of information, to consult some real hydrology, meteorology,
etc., which the ‘‘rigorous statistical’’ approach has shut out
(Klemeš 1993, 1996).

JUST A MOMENT!

Statistical moments seemed to offer an ideal escape from
the uncomfortable Procrustean bed of geometric distribution
fitting. Their computation requires no ordering or other rear-
rangement of observations, no plotting positions, no distribu-
tional assumptions, no curve fitting, no goodness-of-fit testing.
Yet they provide information about the basic characteristics of
the sample and its distribution: its central tendency, dispersion,
symmetry or lack thereof, etc. And if one accepts the two basic
FA postulates stated earlier, there seems to be no reason to
Downloaded 07 Dec 2011 to 192.43.227.18. Redistribution subj
doubt that the sample moments are approximations of popu-
lation moments. Better still, since simple distributions (up to
three parameter ones) exhibit quite distinct relationships be-
tween their moments (‘‘moment ratios’’), it seems reasonable
to expect that a tendency towards a specific relationship be-
tween sample moments will point to a specific distribution; the
all-important distributional assumptions will thus be free of
subjective elements and follow directly from the observation
values themselves.

No wonder, then, that statistical moments have had a great
appeal for hydrological frequency analysts who have written
extensively about them, including one classical study (Wallis
et al. 1974) that bears the suggestive title I have borrowed for
this section.

The crucial difference between estimating a distribution
model from the moments and from a geometric fit of the EDF
resides in this: sample moments may be inaccurate, biased,
constrained, etc. (Wallis et al. 1974), but they are not mis-
leading as the shape of the EDF can be because of its artificial
regularity forced onto it by the plotting positions. As such,
moments involve no ‘‘external contamination’’ of the data,
they treat each single observation in exactly the same way,
and they are as innocent and close to a neutral and objective
characterization of reality as one can possibly get—that is, if
God, as Einstein believed, while being subtle, is not malicious.

However, Einstein’s beliefs notwithstanding, the above
straightforward logic breaks down when it comes to inferences
that the ‘‘innocent’’ statistical moments encourage one to
make. For there does not have to be symmetry between top-
to-bottom and bottom-to-top inferences, especially in situa-
tions involving integration of which moments are an example.
The simplest illustration is provided by the arithmetic mean;
a given set of numbers gives its value uniquely, but a given
mean can result from many completely different sets of num-
bers. Hence, the sample moment ratios are not of much help.
Their diagnostic ambiguity is obvious without any deep anal-
yses and can be seen, for example, from the simple sketch in
Fig. 2(a) in Part 1. Its five selected X-values certainly do have
JOURNAL OF HYDROLOGIC ENGINEERING / JULY 2000 / 235
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a unique set of moments and moment ratios, but they could
have been drawn from either of the two distributions shown
as well as from many others. And this nonuniqueness is not
just a consequence of small-sample variability but applies to
population moments as well. It is known as the ‘‘moment
problem,’’ which says, in essence, that it is possible to find
two distinct distributions that have the same set of moments
(Kotz et al. 1985a; pp. 600–602).

Even when the FA theorist closes one eye and is willing to
accept the guidance of the sample moment ratios, he runs into
a problem: For different distributions, these ratios have differ-
ent biases. And, not knowing the parent distribution of the
sample, one does not know what biases its moments have,
since it could have come from different distributions. So the
theorist still has to make a ‘‘distributional assumption’’ about
the very distribution for which he wants the moment ratios to
identify it.

And it is the same story, the same vicious circle, with all
the other ‘‘theoretical’’ statistical methods of estimation of dis-
tribution models: They are overflowing with rigorous analyses
of bias, robustness, efficiency, sufficiency, asymptotic conver-
gence, and other exotic properties of models which themselves
are the product of manifestly nonrigorous approaches—or
guesses, to use the plain word of Professor Moran, as quoted
in Part 1.

JUST L-MOMENT!—OR, HAS THE ‘‘PRAYER OF
THE STOCHASTIC HYDROLOGIST’’ BEEN
FINALLY GRANTED?

More than 30 years ago, the late Chester Kisiel proposed
the following ‘‘prayer of the stochastic hydrologist’’ (Kisiel
1967):

‘‘Oh, Lord, please make the world linear and Gaussian!’’

While the Lord so far has hesitated, Hosking and Wallis (1997)
took up the challenge and, considering their handicap of being
mere mortals, have done admirably well: their book has made
the world not exactly linear and Gaussian but at least pos-
sessing ‘‘linear moments’’ (L-moments) and being close to
GEV (generalized extreme value) distributed.

L-moments have been a God-send to the FA theorist and
practitioner alike. They require no graphical fitting of an EDF
plot, and the pages of the above book are overflowing with
their other appealing properties. Thus L-moments do not suffer
from the ‘‘moment problem,’’ but define the distribution
uniquely if its mean exists (p. 24); their sample estimates have
small biases and near-normal distributions (p. 37); they do not
give extreme weight to the extreme observations, as do con-
ventional power moments (p. 38); their moment ratios are ro-
bust and not much influenced by outliers and extreme obser-
vations (p. 38); they facilitate better specification of, and
discrimination between, the underlying population distribu-
tions than the conventional moments (p. 40); and they have
many other impressive features, including a pedigree of dis-
tinguished names, theorems, proofs, and more.

But the most conspicuous practical consequence of their ap-
plication is that, in regional analyses of annual hydrological
maxima, they seem to lead to the GEV distribution much more
often than any other method. For this, the most likely expla-
nation is one of these two possibilities: Either most of the
worldwide records of annual maxima are indeed samples from
GEV distributions (as Gumbel insisted 50 years ago), or such
proposition is unsubstantiated (as Moran claimed 10 years
later), and the conspicuously frequent tendency to the GEV
distribution is an artifact of the L-moment method itself.

The second explanation appears to me more likely than the
first for several reasons. To discuss some of them, we need
236 / JOURNAL OF HYDROLOGIC ENGINEERING / JULY 2000
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the L-moment definition, which, for the rth L-moment, is
given on p. 22 of the above book as follows:

r21

r 2 121 jl = r (21) E(X ) (6)r r2j:rO S Djj=0

where the expectation E(Xr:n) defined in terms of the exceed-
ance probability Pr:n of Xr:n has the form

1

E(X ) = x(P)h (P) dP (7)r:n r:nE
0

with hr:n(P) defined by (1).
The definition offers a first general clue. It suggests why L-

moments may make more data sets conform to the same dis-
tribution than other models: They involve more levels of av-
eraging. For example, in the geometric fitting, only the
probability coordinate of an observation is replaced by an ‘‘av-
erage’’ (rank, plotting position of some kind), and in conven-
tional moments only the powers of the observations are av-
eraged. As (7) shows, in L-moments one averages functions
of order statistics (themselves functions of ‘‘averages’’ of ex-
ceedance probabilities), then takes linear combinations of these
averages as per (6), and, as recommended by Hosking and
Wallis (1997, p. 78), in regional analyses one then averages
the single-site L-moments so obtained.

I have been skeptical about ‘‘regional averaging’’ of distri-
bution parameters for quite some time for a number of reasons
(Klemeš 1976), not least because of the fact that real-life struc-
tures and facilities are always exposed to the specific local,
rather than average, conditions. One has to be cautious in this
regard, since not much imagination is needed to envisage that,
after one or two more levels of averaging, some ‘‘continental
super-moments’’ and (Gaussian?) distributions could result,
which—in addition to granting the ‘‘stochastic hydrologist’s
prayer’’—could be so ‘‘robust’’ that Horton’s concern about
mixing a Rock Creek with the Mississippi River floods (cited
in Part 1) would also be answered: They both would be ‘‘out-
liers’’ and could safely be ignored, since they would have no
effect on these super-moments. However, flippancy aside, it is
well known that repeated averaging (i.e., integration) reduces
the information content of the result, and it should be expected
that, after the three levels of averaging involved in ‘‘regional
L-moments,’’ things tend to become similar no matter what
one has started with. A similar equalizing effect of repeated
integration has been identified, for example, for cumulative
processes (including residual mass-curves of time series): a
third-order process of this kind can already be close to an
almost-perfect limiting sine wave, whatever the nature of the
parent process (Klemeš and Klemeš 1988).

The question now is why this ‘‘equalization process’’ seems
to favor the GEV distribution. This can be so partly by default,
since the locus of L-moment ratios for GEV distribution is
close to the middle of the range of loci for the distribution
models commonly used. It can, however, be rooted deeper in
the L-moment structure. To look into this possibility, we shall
examine the following commonly used representations of the
first four L-moments (Hosking 1990):

1

l = EX = x(F ) dF (8a)1 E
0

1
1

l = E(X 2 X ) = x(F )(2F 2 1) dF (8b)2 2:2 1:2 E2 0

1
1 2l = E(X 2 2X 1 X ) = x(F )(6F 2 6F 1 1) dF (8c)3 3:3 2:3 1:3 E3 0
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FIG. 4. Illustration of Structure of L-Moments of Distribution
F(X )

1
l = E(X 2 3X 1 3X 2 X )4 4:4 3:4 2:4 1:44

1

3 2= x(F )(20F 2 30F 1 12F 2 1) dFE
0 (8d )

where F = 1 2 P is the cumulative, or nonexceedance, prob-
ability of X. The polynomials in F on the right-hand sides of
(8), designated by the general form Wr(F) and plotted in Fig.
4(a), are simply ‘‘weighting functions,’’ or filters, by which
the distribution function F(X) [Fig. 4(b)] is successively
‘‘processed’’ to get the values of individual lr. In regional
analysis comprising N sites, the regional L-moment is obtained
as an average, Rlr = (N lr and, of course, F(X) is replaced21N
with the ordered sample Xn.

The question now can be asked ‘‘What kind of a filter, V(F),
would produce parameters j and Rj that could be regarded as
characteristic of an extreme value population?’’ One obvious
choice for such filter would be one with values V = 0 for all
the ordered Xr, r = 1, 2, . . . , n 2 1, and value V = 1 for the
sample maximum Xn. In this way it would select only the
station extremes, thus producing, by definition, a sample from
a population of (regional) extremes which, asymptotically,
should have an extreme value distribution. Hence, 100% of
the value of the parameters j and Rj constructed with the aid
of such a filter could be attributed to an extreme value distri-
bution.

The next question then is ‘‘How much (what percentage) of
the value of an L-moment lr can be attributed to the sample
extreme, Xn, or, more generally, to the uppermost part of
F(X )?’’ It can be argued that the higher this percentage, the
closer the given L-moment is likely to reflect an extremal dis-
tribution.

A cursory inspection of the W(F) functions in Fig. 4(a) in-
dicates that the percentage by which the sample extremes con-
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TABLE 2. Computation Scheme for L-Moments of Order j =
2, 3, 4 for Sample Size n = 5 and Observations X1 < X2 < X3 <
X4 < X5

tribute to the values of l3 and l4 could be quite high for dis-
tribution functions F(X) with a lower bound equal to zero,
small values in the lower tail, and a rather flat body, as illus-
trated in Fig. 4(b). In such a case, the large weights W for the
low F values will be neutralized by the small values of X(F);
the effect of the body in the approximate range 0.1 > F > 0.9
will, to a large extent, cancel out due to the positive-negative
symmetry of the W(F) functions in that range, while the high
extremes of F(X), roughly in the range 0.9 > F > 1.0, will
dominate, since they combine with the high extremes of all
the weight functions Wr(F).

A quantitative illustration of this effect is provided by a
sample of size n = 5 taken from Fig. 2(a) of Part 1 and rep-
resented by order statistics [X1, X2, X3, X4, X5] = [0.5, 1.0, 3.0,
3.5, 7.0]. The percentages by which the extreme variate X5 has
contributed to the first four L-moments (computed according
to the scheme shown in Table 2) are as follows: l1 (the mean
of X) → 47%; l2 → 90%; l3 → 60%; l4 → 61%.

While this is no proof that the geometry of the weighting
functions Wr(F) steers regional L-moments toward those of
the GEV distribution in the above fashion, the proposition
seems worth serious consideration, since some circumstantial
evidence suggests that, whatever its exact mechanism, a ten-
dency toward GEV does exist in L-moments. It is known that
they tend to identify GEV as the parent even in cases where
this is demonstrably not so, for example, where the true parent
distribution is bimodal (Gingras and Adamowski 1992). It is
interesting in this context to recall that, in complete contrast,
the minimum-sum-of-squares fitting of EDFs by Wallis and
Matalas (1974) usually could not identify the EV1 distribution
as the parent even when this in fact was the case.

As for the various other appealing properties of L-moments
cited above, the luster of some of them can, on closer exam-
ination, turn out to be an amber traffic light warning of danger.
This is especially true about their ‘‘robustness’’ vis-a-vis ‘‘out-
liers,’’ which, in plain language, is just a lack of sensitivity
precisely in the part of the distribution which matters most in
every safety-related design—in the distribution’s high tail.
However, this very fact, demonstrated by the virtually un-
changed values of L-moment ratios when ‘‘dropping the larg-
est observation,’’ has been cited among the strongest argu-
ments why they should be ‘‘always preferred in hydrology’’
(Vogel and Fennessey 1993). What is being praised by these
authors is essentially the inability of L-moments to make use
of the all-important additional information provided by an ac-
tually recorded rare extreme event—a very strange praise in-
deed in view of the perpetual complaints of hydrologists, en-
gineers, and statisticians alike that it is the paucity of extreme
observations that prevents us from making better estimates of
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the upper tails of hydrologic distributions and better assess-
ments of the safety of our structures!!

For example, in the balmy city of Victoria, B.C., where
snow measurements started in 1940 (at the airport) and snow
has never been much of a problem, the 57-year maximum of
daily snowfall was 34.8 cm and the monthly maximum was
74.7 cm. Then, on December 29, 1996, 64.5 cm of snow fell
in one day on top of the 59.4 cm already on the ground, bring-
ing the monthly maximum to 123.9 cm. While the L-moments
may have stood up to these ‘‘outliers’’ and remained largely
intact, large numbers of structures and roofs did not and col-
lapsed. The robustness of the L-moments notwithstanding,
most residents reconsidered the robustness of their roofs and
snow shovels, and the city authorities recommended, based on
the valuable additional information, an increase of snow-load
design values.

Ironically, L-moments—the pinnacle of the FA theorist’s
effort to overcome the inadequacies of distribution fitting by
graphical methods on one hand and by conventional moments
on the other—may have overcompensated for both. Thus, the
artificial ‘‘regularization’’ of an EDF achieved in graphical
methods by dragging the randomly dispersed observations into
evenly spaced plotting positions, instead of being remedied,
has been reinforced; the plotting positions were not only
brought in through the back door of the ranks of the order
statistics, but their role was strengthened by the unequal
‘‘weights’’ conferred onto different observations exactly ac-
cording to these ranks (see Table 2). And the ‘‘defect’’ of con-
ventional moments seen in their ‘‘overemphasis’’ of high ex-
tremes was replaced with a desensitization to these extremes,
which, in my judgment, is a defect more dangerous in its prac-
tical consequences than their overemphasis. Moreover, this de-
sensitization stands on more shaky theoretical grounds than
the ‘‘overemphasis’’ of conventional moments, because, in the
latter case, the ‘‘overemphasis’’ emphasizes nothing but the
actually observed values, which are multiplied by themselves
alone, each being treated the same way as any other. In con-
tradistinction, what is being emphasized in L-moments by the
progressively higher powers is the (unknown!) coordinates F,
which—because they are not known—are replaced with ar-
bitrarily imposed ‘‘average’’ coordinates (ranks or plotting po-
sitions), the result being an unequal treatment of individual
observations, represented by the different weights assigned to
them not by nature but by the analyst.

SUMMARY AND CONCLUSIONS

The purpose of this paper has been to argue that the in-
creased mathematization of hydrological frequency analysis
over the past 50 years has not increased the validity of esti-
mates of the frequencies of high extremes and thus has not
improved our ability to assess the safety of structures whose
design characteristics are based on them. The distribution
models used now, though disguised in rigorous mathematical
garb, are no more, and quite likely less, valid for estimating
the probabilities of rare events than were the extensions ‘‘by
eye’’ of duration curves employed 50 years ago. This is be-
cause they rely more heavily on those parts of observation
records that may either provide misleading information about
the high extremes (the low end of a ‘‘probability plot’’) or be
largely irrelevant because they can be equally fitted with al-
most any model (the body of a ‘‘probability plot’’). As a result,
the bulk of the FA theory, with all its exalted rigor and polish,
is spurious, not to say dangerous. It creates an illusion of
knowledge where none exists—and illusion of knowledge can
do more harm than awareness of ignorance.

Hydrological extremes must, of course, be taken into ac-
count when questions of the safety of water-related facilities
arise, whether or not their frequencies can be determined sci-
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entifically, because, as Ortega y Gasset observed half a century
ago, ‘‘Life cannot wait until the sciences have explained the
universe scientifically.’’ In the meantime, guesses must be
made, but it is counterproductive to adorn them with an aura
of rigor and science. Rather, in the interest of fair practice,
simple extrapolation procedures, commensurate with the cur-
rent lack of credible scientific basis for extrapolation of dis-
tributions’ upper tails, should be adopted by professional con-
sensus (Klemeš 1987), and, at the same time, serious work
should continue on understanding the ‘‘hydrological dice’’
(Eagleson 1972; Klemeš 1978).

Apropos, could it be that Confucius had FA theorists in
mind when he said:

‘‘Their thinking is insincere because their wishes discolor
the facts and determine their conclusions, instead of seeking
to extend their knowledge to the utmost by impartially in-
vestigating the nature of things.’’

APPENDIX I. DISTRIBUTION OF N RANDOM
NUMBERS FROM U(0, 1) OVER SET OF N
QUANTILES OF EQUAL WIDTHS 1/n

The probability of a specific mapping of n random numbers
from U(0, 1) onto the set of n equal quantiles 1/n can be found
by the following combinatorial argument based on Feller
(1966).

When a random sample of size n is drawn (with replace-
ment) from a population of n distinct elements, a given ele-
ment can be drawn k times, k = 0, 1, 2, . . . , n. The actual
frequencies with which the n individual elements are drawn
are denoted, say, as x1, x2, . . . , xn. If the complete set of
frequencies of the k-values in an actual sample is denoted as
y0, y1, y2, . . . , yk, . . . , yn (where yk is the frequency of k), then
the number of different ways to draw an n-sample containing
the n 1 1 possible distinct k-values with their n 1 1 actual
frequencies yk is given by the formula

N = (n! n!)/(x ! x ! . . . x ! y ! y ! y ! . . . y !)1 2 n 0 1 2 n

where x1, x2, . . . , xn $ 0; x1 1 x2 1 . . . 1 xn = n; and y0 1
y1 1 y2 1 . . . 1 yn = n.

Since the number of all possible ways of creating an n-
sample from a population of size n is the probability of ann ,
specific kind of sample is nN/n .

Note that, in the present context, each value xi represents
the number of the actual random exceedance probabilities (i.e.,
values of P) in quantile Qi, and yk is the number of quantiles
in which exactly k values of P are found.
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