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ABSTRACT: This paper and its companion critique the common frequency analysis techniques for hydrological
extremes—in particular, the claims that their increasingly refined mathematical structures have increased the
accuracy and credibility of the extrapolated upper tails of the fitted distribution models over and above that
achieved by the 50-year-old empirical methods. Part 1 compares the common-sense engineering origins of
frequency analysis with its present ostensibly ‘‘rigorous theory’’; some myths advanced under the banner of the
latter are analyzed in greater detail in Part 2.
‘‘If you know something, hold that you know it—and if
you do not, admit the fact; this is knowledge.’’

Confucius

PREFACE

This paper is based on my 1998 Ven Te Chow Award Lec-
ture, which summarized my views on frequency analysis (FA
for short) of hydrological extremes, some of which have been
expressed on various previous occasions [e.g., Klemeš (1994),
and references therein]. The statistical and probabilistic con-
cepts discussed here are elementary and have been known for
decades, but their consequences for hydrology and water re-
sources design are seldom seriously discussed, often ignored
or evaded, and almost never acted upon. I should therefore
like to hope that writing this paper has not been entirely in
vain and that it may help others avoid wasting time and effort
on idle pursuits. Looking back, I believe that, had I come
across a few papers of a similar kind, say, 40 years ago, I
myself might have wasted less time in the early stages of my
career, and my Ven Te Chow Award citing ‘‘lifetime career
achievement’’ may have been better deserved.

INTRODUCTION

It is axiomatic that, for a structure or facility to be safe
against water-related hazards, its design parameters should re-
flect the relevant hydrological extremes, in terms of both their
magnitude and frequency. In both respects, the basic source of
information is a record of observations of the conditions in
the past—the historic record. In hydrology, the relation be-
tween magnitudes and frequencies within the historic record
has traditionally been depicted by the ‘‘duration curve’’ ob-
tained—to follow the old ASCE Hydrology Handbook (ASCE
1949)—by arranging the observations ‘‘in order of magnitude,
beginning with 1 for the biggest.’’ Since historic records of
reliable and systematic observations are relatively short, data
on hydrological extremes are naturally limited, but one thing
is fairly certain—namely, that bigger events than those in the
observation record may occur in the future.

This raises the problem of extrapolation beyond the range
of observations, which, despite its bad reputation in physics
and the exact sciences in general, cannot be avoided in engi-
neering, applied sciences, and everyday life. For the hydro-
logical engineer, one of the most vexing problems has always
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been how to extrapolate the upper end of a duration curve.
Help in this matter may one day be provided by the science
of hydrology, which, presumably, will someday understand the
‘‘hydrological dice’’ well enough to be able to assess the prob-
abilities of possible outcomes from its physical dynamics and
geometry, without having to wait for the numbers yielded by
its actual throws.

More than a century ago, various empirical formulas for
‘‘maximum flow’’ started to appear, without relating this flow
to a specific frequency. To quantify the latter, statistical meth-
ods were introduced around the turn of the century, and it is
important to note that they were treated literally as methods,
i.e., as convenient tools for processing the data; as a matter of
fact, the duration curve itself is a product of a ‘‘statistical
method’’—ordering—applied in this pragmatic sense.

Allan Hazen was one of the first to use these methods for
extrapolation of hydrological duration curves (of reservoir
storage, in this case). The first difficulty he encountered was
the fact that a duration curve, when properly plotted as a step
function, completely fills its whole definition space (the sam-
ple size n) so that it cannot be extrapolated. This is illustrated
by the solid line in Fig. 1(a). Extrapolation becomes concep-
tually feasible only when the discrete steps are replaced by
points on a continuous scale of relative frequencies between
0 and 1, because only then ‘‘some free space becomes avail-
able’’ in the plot before the first and after the last point, as
shown in Fig. 1(a), where, following Hazen (1914), the point
plot has been flipped horizontally. This horizontal flip he may
have done just for convenience; the extrapolation was done
manually, and it is more natural to extend lines in the direction
of writing, i.e., from left to right, than the other way around.

To make a point representation of the duration curve, it was
of course necessary to decide where exactly each point should
be plotted within the interval corresponding to its particular
step. Common sense led Hazen to pick the midpoint, thus es-
tablishing what is now known as the ‘‘Hazen plotting posi-
tion’’ for the rth observation, PPr = (r 2 0.5)/n, thereby laying
ground to what later was to become the ‘‘plotting position
problem’’—a major problem in its own right in the context
of the FA theory (Cunnane 1978).

But Hazen then encountered another difficulty; in his words:

‘‘The practical difficulty with the plotting . . . is the great
curvature of the lines. . . . This difficulty is so great as to
make the method unsatisfactory in most cases; but this has
been removed by using paper ruled with lines spaced in
accordance with a probability curve, or, as it is otherwise
called, the normal law of error. . . . It is seen that the sharp
curvature at the ends is entirely eliminated.’’

Plotted on paper ruled in this fashion, the point plot of Fig.
1(a) is transformed into one shown in Fig. 1(b).

It is to Hazen’s credit that, in spite of his ingenious disposal
of the difficulty with the ‘‘sharp curvature’’ of the upper end
of the plot, he scrupulously avoided extending his smooth
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FIG. 1. Different Plots of Historic Frequencies for 40-Year Record of Annual Maxima of Daily Precipitation Totals at Coquitlam Lake,
B.C. (a) Two Forms of Duration Curve; (b) Standard EDF on Gaussian Probability Paper; (c) Return Periods on Logarithmic Plot
‘‘lines’’ beyond the range 1–99%, cautiously commenting that
‘‘much more numerous data, covering may times longer pe-
riods, would be required to settle finally whether the law of
error, as used in this way, is strictly applicable to long-term
records.’’

We thus see that ‘‘statistical methods,’’ namely, Hazen’s in-
troduction of the ‘‘law of error,’’ ‘‘plotting position,’’ and
‘‘probability plotting,’’ served primarily as a convenience aid
in the extrapolation of the upper end of the duration (or fre-
quency) curve. Note that Hazen frankly admitted not knowing
the answer to the deeper question, i.e., whether the ‘‘law of
error’’ had a general applicability to hydrologic data. But his
clever invention of the ‘‘probability paper,’’ by allowing a ge-
ometrically pleasing and practically unlimited extrapolation of
any empirical frequency plot, opened the door to speculations
whose danger was clearly seen by the great hydrologist of the
time, Robert Horton, who warned:

‘‘It is, however, important to recognize the nature of the
physical processes involved and their limitations in con-
nection with the use of statistical methods . . . [a] Rock
Creek cannot produce a Mississippi River flood any more
than a barnyard fowl can lay an ostrich egg’’ (Horton 1931).

And, fifty years ago, H. K. Barrows, an MIT emeritus pro-
fessor of hydraulic engineering, did not find the topic of
frequency analysis worth more than three pages (including
1 1/2 pages of diagrams) in his 432-page book on floods (Bar-
rows 1948); he described the situation in these simple words:

‘‘The most effective method for determining flood fre-
quency consists in plotting frequency in years or percentage
of time against peak discharge on logarithmic paper, draw-
ing a smooth curve through the plotted points, and extend-
ing this in the higher brackets by eye. Various statistical
methods are used in the determination of frequencies. . . .
These are merely methods of extending the use of data
beyond the length of record; and, since the accuracy of
results depends basically upon this length of record, it does
not appear that the use of statistical methods adds to the
dependability of the results over and beyond that obtained
by the use of logarithmic plotting and extension of curves
by eye.’’
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Fig. 1(c) shows such a logarithmic plot for the data from
Figs. 1(a and b). Professor Barrows even labeled the frequency
axis in his extrapolated plots only as ‘‘probable frequency,’’
arguably to stress the lack of any deeper scientific underpin-
ning of the whole exercise. And, demonstrating on several
plots how uncertain such extrapolations inevitably are, even
for records of the order of 50–100 years, he concluded: ‘‘This
shows that [such a] record, or longer than exists on most
streams, is not nearly long enough to give valid information
on the frequency of a very large flood.’’

That is it: Unpleasant and disappointing as it may be for the
engineer, the designer, and the planner, the fact that the infor-
mation they need cannot be provided is freely admitted and
clearly stated—no evasions, artful hypotheses, ifs, or let’s as-
sumes, and no speculations hidden behind ‘‘scientific’’ smoke
screens. Confucius would have been pleased with Professor
Barrows, Allan Hazen, Robert Horton—he would call them
gentlemen—and, indeed, with the intellectual honesty of the
scientific culture of the times, still upholding the standards so
well epitomized in the famous statement of Newton:

‘‘Hitherto I have not been able to discover the causes of
those properties of gravity from phenomena, and I feign no
hypotheses; for whatever is not deduced from the phenom-
ena is to be called an hypothesis; and hypotheses, whether
metaphysical or physical, whether of occult qualities or me-
chanical, have no place in experimental philosophy’’ (Gil-
lott and Kumar 1995).

It is disconcerting to see how this culture has degenerated
during the past few decades. Indeed, it seems that ‘gentlemen’
have been succeeded by ‘lesser men,’ and Confucius knew the
difference: ‘‘A gentleman takes as much trouble to discover
what is right as lesser men take to discover what will pay’’
(The Analects, Book IV, 16). The latter discovery can be sum-
marized thus: ‘‘If you do not know a thing, redefine it into
something you know.’’

In the area of hydrological FA, this recipe has been crea-
tively applied as follows: The often intractable real world of
large floods, precipitation, snow accumulations, ice storms,
etc., has been redefined into the well-traveled world of the
abstract notion of random variable; their multifaceted nature
has been replaced by a (typically) univariate probability dis-
tribution; for their complex generating mechanisms a simple
equation with two or three parameters has been substituted and
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deemed to reign over their whole observed as well as unob-
served range; their historical record has been proclaimed a
random sample drawn from the postulated distribution, their
historical frequencies being thus magically transformed into
time-transcending probabilities. And there is a bonus: no hy-
drology, meteorology, climatology, etc., are needed anymore,
since all the knowledge required to navigate in this redefined
world can be found in some encyclopedia of statistical sci-
ences.

In the process of this ‘‘paradigm shift,’’ the concrete prac-
tical problem of ‘‘How often can a flood (precipitation, etc.)
exceed a specific magnitude at a given location?’’ has thus
been redefined into a sterile academic exercise on the theme
‘‘What probability distribution model can best be fitted to a
given set of numbers?’’ And, lo and behold, out of profound
‘‘theoretical analyses’’ of the latter, there is supposed magi-
cally to emerge an answer to the former—just shake the tail
of the resulting ‘‘theoretical probability distribution model’’
and all the thousand-, ten thousand-, and million-year events
will fall to your feet like ripe pears!

And let’s keep in mind that all this is no innocent mathe-
matical parlor game, but a very serious business. To help main-
tain a real-life perspective, Fig. 1 can serve as a useful bench-
mark. The data used in it represent a 40-year record of annual
maxima of daily precipitation totals for the Coquitlam Lake in
British Columbia, and the context for the extent of the desired
extrapolation is provided by the fact that the matter of crucial
interest here is the exceedance probability of a daily precipi-
tation total of '400 mm. This value is an estimate of the
Probable Maximum Precipitation (PMP), which serves as the
basis (via transformation into PMF—the Probable Maximum
Flood) for safety assessment of a dam at the outskirts of the
city of Vancouver, B.C., Canada (Schaefer 1981; Nikleva
1991).

Professor Barrows would probably have commented that the
40-year record available in the above case ‘‘is not nearly long
enough to give valid information on the frequency of a daily
precipitation total in that range.’’ Indeed, extrapolation of such
an extent, no matter what kind of ‘‘tail stretching’’ may be
used, is a pure guess. But this the modern ‘‘frequency analysis
theorist’’ cannot admit, since it would immediately expose his
‘‘rigorous’’ analyses and estimates as merely tall tales, no bet-
ter—and arguably worse—than Professor Barrows’ ‘‘exten-
sion by eye.’’

So, let us now peek into the magician’s kitchen to see how
the tall tales about tails of hydrological distributions are spun.

TWO PILLARS OF THE THEORY OF FREQUENCY
ANALYSIS

The two pillars supporting the whole edifice of FA theory
are the following hypotheses:

1. A hydrological variable X, such as annual volume of run-
off, annual maximum peak flow, or daily precipitation
total, is an ‘‘independent identically distributed random
variable’’ (iidrv) having a (continuous) distribution F(X)
of a fairly simple mathematical form.

2. An n-year record of its historic observations is a ‘‘ran-
dom sample’’ from this distribution.

On the one hand, neither of these hypotheses stands on firm
hydrologic grounds, nor is their validity a subject of serious
research. More typically, statistical hydrology studiously
avoids such inquiry (and ignores evidence to the contrary),
adopts both assumptions as postulates, and elaborates their
consequences by imitating rigorous methods of pure mathe-
matics.

On the other hand, neither of these theoretical pillars was
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ever needed or had to be invoked in the development of the
practical techniques on which FA depends to this day. To the
contrary, bringing them on the scene poses some embarrassing
problems and requires substantial departures from the very
rigor under whose banner they have been introduced, as will
be illustrated in the following sections.

The ‘‘iidrv’’ and Its Improbable Probability
Distribution

As already mentioned, this pillar—the probability distri-
bution of an iidrv—originally was nothing more than a curve
intended to smooth out a duration curve to facilitate its ex-
trapolation. The duration curve itself has no inherent proba-
bilistic connotation, since any set of unequal numbers, whether
generated by a random or a deterministic mechanism, can be
ordered according to their magnitudes. But, during the past
three decades or so, we have been exposed to the concept of
‘‘probability distribution of iidrv’’ so intensively and persis-
tently that we take its identification with the duration curve
for a fact and no longer connect its meaning with hydrological,
meteorological, and other pertinent realities—Newton’s ‘‘phe-
nomena.’’

We know that natural conditions in most basins have been
changing over time, that even the climate has been changing
and is likely to do so even more, and that there operate large-
scale processes (time-wise as well as space-wise) such as
ENSO, orbital fluctuations, etc. This all is testimony to non-
stationarity and against an ‘‘identity’’ of hydrological distri-
butions over time, as well as against sequential independence
of hydrological phenomena. We also acknowledge that small
and high events may be dominated by different processes, that
different mechanisms may prevail at different scales. All this
undermines the claim that a given hydrological phenomenon
X is identically distributed, i.e., that it is governed by the same
simple algebraic form of F(X) over its whole range of mag-
nitude. In short, we know that the whole ‘‘iidrv’’ concept is
hydrologically impeachable but have been brainwashed into
believing that it is ‘‘doing a good job’’ (Klemeš 1989).

It is ironic that the only clue the FA theory inadvertently
takes from hydrology is the wrong one. It derives the ‘‘distri-
butional assumptions’’ [i.e., the general shape of F(X)] from a
‘‘probability plot’’ such as Fig. 1(b) whose shape is dominated
by the small and medium observations. This shape is generally
convex on the Gaussian plot, because hydrological phenomena
like precipitation, runoff, snow cover, etc., have a zero lower
bound, which ‘‘bends’’ the lower tail of the plot towards a
horizontal asymptote. As a result, all the ‘‘standard’’ distribu-
tion models are convex on Gaussian frequency scale; they all
are models with positive skewness. Hence, it is the physical
regime prevailing in the formation of the lower tail that
determines the shape of the extrapolated upper tail; obser-
vations that are hydrologically least relevant to the high ex-
tremes—and to the safety of facilities affected by them—have
the greatest influence on their estimated ‘‘probabilities’’!

Here, the FA theorist faces quite a paradox: On one hand,
the observations are supposed to be mutually independent,
while, on the other hand, the probabilities of the highest ex-
tremes depend on the values of the smallest events in a very
deterministic way. To drive this point home, I occasionally lure
FA theorists into various traps, one of which is as follows:
First, I propose that the magnitude of, say, a 1,000-year flood
is unlikely to be affected by conditions in the two or three
driest years on record when no floods occurred. This propo-
sition being invariably accepted as reasonable, the following
exercise is then performed: (1) some historic record of peak
discharges is selected, the analyst selects a distribution model
he considers most appropriate, fits it using the most rigorous
method available to him, and determines the magnitude of,
say, the 1,000-year flow; (2) then the two or three smallest
observations are reduced by, say, 50% and the exercise is re-
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peated; (3) finally, the values of the 1,000-year events for cases
(1) and (2) are compared. The last time I engaged in this game,
the historic flow record was selected randomly by the number
of the gauging station, and the results were as follows: the
1,000-year flow was 370 m3/s in case (1) and something over
700 m3/s in case (2). Mercifully, when we then checked the
name of the gauging station used, we learned it was ‘‘False
River.’’

One point of such exercise is to demonstrate that the pos-
tulate that the flood (or other hydrologic event) is an ‘‘iidrv’’
is so strong, it overrides any hydrological consideration, how-
ever reasonable or well established it may be. There simply is
no way any hydrologically relevant information could ‘‘con-
taminate’’ the sterile Platonic world of contemporary FA. The
other point is to show that the unscientific subjective ‘‘exten-
sion of the curve by eye’’ would be completely unaffected in
the above exercise; it would be robust in a hydrologically sen-
sible way.

But even if the ‘‘iidrv’’ postulate were justified, it still would
be practically useless for adequately specifying the tail of a
distribution F(X) in the probability range of interest for design
parameters of important structures (0.001 and lower) for
purely statistical reasons—because of the shortness of hydro-
logical records. While the Glivenko theorem (Kotz et al. 1983;
p. 442) assures ‘‘uniform and almost sure convergence’’ of the
empirical distribution function, EDF(X), to the true F(X), it
would be embarrassingly naive to invoke it here, since the
‘‘sufficiently large’’ sample size n to which it refers would
have to be of the order of thousands of years to be helpful for
the above purpose. This was realized even by mathematically
unsophisticated engineers like Hazen and Barrows and was
later independently pointed out by the late world-renowned
Australian statistician and probabilist, Professor P. A. P.
Moran. In the early 1950s, he was engaged in the study of
various statistical-hydrological aspects of the Snowy Moun-
tains hydroelectric development, one of them being the esti-
mation of return periods of floods. Professor Moran noted:

‘‘This requires, essentially, the estimation of the tail of a
probability distribution from a sample of values which is
usually not dense in this tail. . . . These limitations arise
from the shortness of the series of observations and can-
not be overcome by mathematical sleight of hand. . . . In
the first place, the form of the distribution is not known
and any distribution used must be guessed. This may
have a considerable effect since the part of the distribution
we are interested in is well away from the part where the
observations provide some information about the shape’’
(Moran 1957; emphasis added).

No doubt, Confucius would have appreciated Professor
Moran’s sincerity. To my knowledge, the paper in which the
above diagnosis was made was Professor Moran’s first and
last paper on flood probabilities. Seeing that the theory of
probability and statistics cannot help engineers in this regard,
he considered it useless to engage in any further ‘‘mathemat-
ical prestidigitation’’ [as he later called it in Moran (1959)]
and never touched the subject again. Unfortunately, few FA
theorists followed his example. While they sometimes admit
that ‘‘it is unlikely that the distribution of [X] can be correctly
identified’’ (Estimating 1988; p. 13), they prefer to emulate
Kammerer’s and Jung’s approach to theories of ESP (extra-
sensory perception), on which Arthur Koestler has made this
cryptic comment:

‘‘Like theologians who start from the premise that the mind
of God is beyond human understanding and then proceed
to explain how the mind of God works, they postulated an
a-causal principle, and proceeded to explain it in pseudo-
causal terms’’ (Koestler 1974; p. 98).
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FIG. 2. (a) Schematic Illustration of Fact that a Given Random
Sample, X1, . . . , Xr , . . . , Xn , May Have Come from Different Dis-
tributions, Depending on Specific Set of Random Exceedance
Probabilities, [P], by Which It Has Been Generated; (b) Exam-
ples of Different Sets of Random Exceedance Probabilities, [P],
Generated from U(0, 1); (c) Schematic Illustration of Probability
Density Functions hr (P) of Pr , r = 1, . . . , n

The FA theorists fall into the same trap: They first acknowl-
edge that probabilities of hydrological extremes cannot be de-
termined from the data available and then they proceed to
devise ever more rigorous methods for doing exactly that.

The ‘‘Random Sample’’ and Its Dilemmas

The cynic might say that the main purpose of the second
pillar of the FA theory—the random sample postulate—is to
demonstrate that it must be violated in order that any distri-
bution model can be determined in practice. Indeed, the old
unscientific approach of extrapolating the duration curve is
much less controversial in this regard. It makes only one as-
sumption, which can hardly be questioned—that bigger events
can occur in the future than those recorded in the past—and
making no others, it violates none either.

Not so with the random sample postulate. First, it assumes
that the events are independent, which is admitted to be un-
likely even in basic statistical literature: ‘‘Even though our
assumption that X1, X2, . . . , Xn are independent is hard to
justify in practice, we shall, in the interest of simplicity and
an easier exposition, continue to retain it’’ (Kotz et al. 1982;
p. 607). Second, it implies that the historic record is the result
of one of ‘‘repeatable’’ and ‘‘equally likely’’ experiments,
though it is obvious that it is neither, especially given the fact
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of a nonstationary climate, land use, etc. Third, if observations
are ‘‘drawn’’ from some specific distribution, then an obser-
vation of the same magnitude always has the same probability,
no matter which place it occupies in the empirical distribution
function (EDF) of a given sample. This is violated by the fact
that, in practice, its probability is ‘‘estimated’’ by its position,
i.e., rank, in the EDF, so that the probability of an observation
is not inherent in its own magnitude, as claimed by the theory,
but depends on the magnitudes of the other observations in
the given sample. Fourth, being ‘‘drawn at random’’ from
some distribution F(X), the F values (or the exceedance prob-
abilities P = 1 2 F) corresponding to the random values of X
are, by definition, a random sample from a uniform distribu-
tion U(0, 1); as such, they are scattered irregularly across the
exceedance probability axis and occupy different locations in
different samples, so that each Pr itself has a probability dis-
tribution hr(P). This is illustrated in Fig. 2. However, this basic
feature of a random sample is violated by the fact that an
ordered sample X1, X2, . . . , Xr, . . . Xn, such as shown in Fig.
2(a), is always plotted in regularly spaced plotting positions
PPr, r = 1, . . . , n.

In order to get a better appreciation of the lack of credibility
of the extrapolated tails of distribution models supported by
the two stated pillars of the FA theory, some of the above
points will be examined in more detail in Part 2 of this paper
(Klemeš 2000).
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